f08 — Least-squares and Eigenvalue Problems (LAPACK) f08mec

NAG C Library Function Document
nag_dbdsqr (f08mec)

1 Purpose

nag_dbdsqr (f08mec) computes the singular value decomposition of a real upper or lower bidiagonal
matrix, or of a real general matrix which has been reduced to bidiagonal form.

2 Specification

void nag_dbdsqr (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer ncvt,
Integer nru, Integer ncc, double d[], double e[], double vt[], Integer pdvt,
double u[], Integer pdu, double c[], Integer pdc, NagError *fail)

3 Description

nag_dbdsqr (f08mec) computes the singular values, and optionally, the left or right singular vectors of a
real upper or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition
(SVD) of B as

B=Uxv".
Here ¥ is a diagonal matrix with real diagonal elements o; (the singular values of B), such that
oy 20220, 20

U is an orthogonal matrix whose columns are the left singular vectors u;; V' is an orthogonal matrix whose
rows are the right singular vectors v;. Thus

T .
BU,,;IO'i'U,,; and B V; = O Uy, ’521,2,...,77,.

To compute U and/or V7, the arrays U and/or vt must be initialised to the unit matrix before nag_dbdsqr
(f08mec) is called.

The function may also be used to compute the SVD of a real general matrix A which has been reduced to
bidiagonal form by an orthogonal transformation: A = QBP”. If A is m by n with m > n, then Q is m
by n and P! is n by n; if A is n by p with n < p, then Q is n by n and P’ is n by p. In this case, the

matrices  and/or PT must be formed explicitly by nag dorgbr (fO8kfc) and passed to nag dbdsqr
(f08mec) in the arrays u and/or vt respectively.

nag_dbdsqr (f08mec) also has the capability of forming U TC, where C is an arbitrary real matrix; this is
needed when using the SVD to solve linear least-squares problems.

nag_dbdsqr (f08mec) uses two different algorithms. If any singular vectors are required (i.e., if nevt > 0
or nru > 0 or nec > 0), the bidiagonal QR algorithm is used, switching between zero-shift and implicitly
shifted forms to preserve the accuracy of small singular values, and switching between QR and QL
variants in order to handle graded matrices effectively (see Demmel and Kahan (1990)). If only singular
values are required (that is, if nevt = nru = nce = 0), they are computed by the differential qd algorithm
(see Fernando and Parlett (1994)), which is faster and can achieve even greater accuracy.

The singular vectors are normalized so that ||u;|| = ||v;|] = 1, but are determined only to within a factor
+1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873-912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer.
Math. 67 191-229
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S  Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether B is an upper or lower bidiagonal matrix as follows:
if uplo = Nag_Upper, B is an upper bidiagonal matrix;
if uplo = Nag Lower, B is a lower bidiagonal matrix.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix B.

Constraint: n > 0.

4: nevt — Integer Input

On entry: nevt, the number of columns of the matrix V7 of right singular vectors. Set nevt = 0 if
no right singular vectors are required.

Constraint: nevt > 0.

5: nru — Integer Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set nru = 0 if no left
singular vectors are required.

Constraint: nru > 0.

6: nce — Integer Input
On entry: ncc, the number of columns of the matrix C. Set nec = 0 if no matrix C' is supplied.

Constraint: nce > 0.

7: d[dim] — double Input/Output
Note: the dimension, dim, of the array d must be at least max(1,n).
On entry: the diagonal elements of the bidiagonal matrix B.
On exit: the singular values in decreasing order of magnitude, unless fail > 0 (in which case see
Section 6).

8: e[dim] — double Input/Output
Note: the dimension, dim, of the array e must be at least max(1,n — 1).
On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: the array is overwritten, but if fail > 0 see Section 6.
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10:

11:

13:

vt[dim] — double Input/Output

Note: the dimension, dim, of the array vt must be at least max(1,pdvt x ncvt) when
order = Nag_ColMajor and at least max(1, pdvt x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix is stored in vt[(j — 1) x pdvt+ ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in vt[(i — 1) x pdvt+ j — 1].

On entry: if nevt > 0, vt must contain an n by ncvt matrix. If the right singular vectors of B are
required, ncvt = n and vt must contain the unit matrix; if the right singular vectors of A are

required, vt must contain the orthogonal matrix P’ returned by nag dorgbr (fO8kfc) with
vect = Nag_FormP.

On exit: the n by ncvt matrix V' or V' PT of right singular vectors, stored by rows.

vt is not referenced if nevt = 0.

pdvt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vt.

Constraints:

if order = Nag_ColMajor,
if nevt > 0, pdvt > max(1,n);
otherwise pdvt > 1;

if order = Nag_RowMajor, pdvt > max(1, ncvt).

u[dim] — double Input/Output

Note: the dimension, dim, of the array u must be at least max(l,pdu x n) when
order = Nag_ColMajor and at least max(1, pdu x nru) when order = Nag RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix U is stored in u[(j — 1) x pdu + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix U is stored in u[(¢ — 1) x pdu + j — 1].

On entry: if nru > 0, u must contain an nru by n matrix. If the left singular vectors of B are
required, nru = n and u must contain the unit matrix; if the left singular vectors of A are required,
u must contain the orthogonal matrix () returned by nag dorgbr (f08kfc) with
vect = Nag_FormQ.

On exit: the nru by n matrix U or QU of left singular vectors, stored as columns of the matrix.

u is not referenced if nru = 0.

pdu — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array u.

Constraints:
if order = Nag_ColMajor, pdu > max(1,nru);
if order = Nag_RowMajor, pdu > max(1,n).
c[dim] — double Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pdc X nec) when
order = Nag_ColMajor and at least max(1, pde x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pdc + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pde + j — 1].

On entry: the n by ncc matrix C' if nee > 0.
On exit: ¢ is overwritten by the matrix U’ C.

¢ is not referenced if nce = 0.
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14:  pdc — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.
Constraints:

if order = Nag_ColMajor,
if ncc > 0, pde > max(1,n);
otherwise pde > 1;

if order = Nag_RowMajor, pdc > max(1, ncc).

15:  fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nevt = (value).
Constraint: ncvt > 0.

On entry, nru = (value).
Constraint: nru > 0.

On entry, ncc = (value).
Constraint: ncc > 0.

On entry, pdvt = (value).
Constraint: pdvt > 0.

On entry, pdu = (value).
Constraint: pdu > 0.

On entry, pde = (value).
Constraint: pdc > 0.
NE_INT 2

On entry, pdvt = (value), nevt = (value).
Constraint: pdvt > max(1, nevt).

On entry, pdu = (value), nru = (value).
Constraint: pdu > max(1, nru).

On entry, pdu = (value), n = (value).
Constraint: pdu > max(1,n).

On entry, pde = (value), nec = (value).
Constraint: pde > max(1, nee).
NE_INT_3

On entry, n = (value), nevt = (value), pdvt = (value).
Constraint: if nevt > 0, pdvt > max(1,n);
otherwise pdvt > 1.

On entry, n = (value), nce = (value), pde = (value).
Constraint: if neec > 0, pde > max(1,n);
otherwise pdc > 1.
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NE_CONVERGENCE
(value) off-diagonals did not converge. The arrays d and e contain the diagonal and off-diagonal
elements, respectively, of a bidiagonal matrix orthogonally equivalent to B.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to
bidiagonal form (prior to calling the function) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If o, is an exact singular value of B and &; is the corresponding computed value, then
|6; — ;| < p(m,n)eo;

where p(m,n) is a modestly increasing function of m and n, and € is the machine precision. 1f only
singular values are computed, they are computed more accurately (i.e., the function p(m,n) is smaller),
than when some singular vectors are also computed.

If w; is the corresponding exact left singular vector of B, and u; is the corresponding computed left
singular vector, then the angle 6(4%;, u;) between them is bounded as follows:

0(ii;, u;) < p(m,n)e
relgap,;
where relgap; is the relative gap between o; and the other singular values, defined by
relgap; = minw.
- # (0i+0y)

A similar error bound holds for the right singular vectors.

8 Further Comments

The total number of floating-point operations is roughly proportional to 7’ if only the singular values are
computed. About 6n x nru additional operations are required to compute the left singular vectors and

about 6n” x ncvt to compute the right singular vectors. The operations to compute the singular values
must all be performed in scalar mode; the additional operations to compute the singular vectors can be
vectorized and on some machines may be performed much faster.

The complex analogue of this function is nag_zbdsqr (fO8msc).

9 Example

To compute the singular value decomposition of the upper bidiagonal matrix B, where

3.62 1.26  0.00  0.00
0.00 —-241 -1.53 0.00
0.00  0.00 1.92 1.19
0.00 0.00 0.00 -—1.43

B =
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See also the example for nag dorgbr (fO8kfc), which illustrates the use of the function to compute the
singular value decomposition of a general matrix.

9.1 Program Text

/* nag_dbdsqr (f08mec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, n, pdvt, pdu, d_len, e_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
double *c=0, *d=0, *e=0, *u=0, *vt=0;

INIT FAIL(fail);
Vprintf ("f08mec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("$*[*\n] ");
Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR
#define U(I,J) ul(J-1)*pdu + I - 1]
#define VT(I,J) vt[(J-1)*pdvt + I - 1]
order = Nag_ColMajor;
pdu = n;
pdvt = n;
#else
#define U(I,J) ul(I-1)*pdu + J - 1]
#define VT(I,J) vt[(I-1)*pdvt + J - 1]
order = Nag_RowMajor;
pdu = n;
pdvt = n;
#endif

/* Allocate memory */

if ( !(c = NAG_ALLOC(1 * 1, double))

= NAG_ALLOC(d_len, double))

NAG_ALLOC(e_len, double))
))
e)

o O
Il

u = NAG_ALLOC(n * n, double
vt = NAG_ALLOC(n * n, doubl

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read B from data file x/

for (i = 1; i <= n; ++i)
Vscanf ("s1f", &d[i-1]);

Vscanf ("$*[*\n] ");

for (i = 1; i <= n-1; ++1)
Vscanf ("$1f", &el[i-1]);
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Vscanf ("s*x[*\n] ");
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);
if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}

/* Initialise U and VT to be the unit matrix */
for (i = 1; i <= n; ++1)

{
for (j = 1; j <= n; ++3)
{
U(llj) - O Or
VT(i,j) = 0.0;
¥
U(i,i) = 1.0;
VT(i,i) = 1.0;
}

/* Calculate the SVD of B */
fO08mec(order, uplo, n, n, n, 0, 4, e, vt, pdvt, u, pdu, c,
1, s&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08mec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print singular values, left & right singular vectors =*/
Vprintf ("\nSingular values\n");
for (i = 1; i <= n; ++i)
Vprintf ("%8.4f%s", d[i-1], i%8==0 2"\n":" ");
Vprintf ("\n\n") ;

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
vt, pdvt, "Right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
u, pdu, "Left singular vectors, by column", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (c¢) NAG_FREE(c);
if (d) NAG_FREE(Q);
if (e) NAG_FREE(e);
if (u) NAG_FREE(u);
if (vt) NAG_FREE(vt);

return exit_status;
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9.2 Program Data

fO08mec Example Program Data
4
3.62 -2.41 1.92 -1.43
1.26 -1.53 1.19
IUI

9.3 Program Results

f08mec Example Program Results

Singular values
4.0001 3.0006 1.9960

:Value of N

:End of matrix B
:Value of UPLO

Right singular vectors, by row

1 2

B wWN R
[eNoNoNe)

.8261 0.5246 0.2024
.4512 -0.4056 -0.7350
.2823 -0.5644 0.1731
.1852 -0.4916 0.6236

Left singular vectors, by column

1 2
1 0.9129 0.3740 0
2 -=0.3935 0.7005 0
3 0.1081 -0.5904 0
4 -0.0132 0.1444 -0

.1556
.5489
.6173
.5417

OO OO

0.9998

.0369
.3030
.7561
.5789

.0512
.2307
.5086
.8280

NAG C Library Manual
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